Датчик TPS — что это? Какие ошибки может спровоцировать?

Содержание

Расшифровка кода 41 ошибки

Датчик TPS что это?

Коды ошибок на машинах высокого класса можно считать с дисплея на панели приборов, а на бюджетных автомобилях для этого имеется специальный диагностический разъем. Если высветится или «считается» ошибка 41, то это означает, что что-то не в порядке с TPS – датчиком положения дроссельной заслонки на двигателе (Throttle Position Sensor).

TPS – это потенциометр (переменный резистор), назначение которого «следить» за положением дроссельной заслонки и своевременно передавать ECM – электронному блоку управления двигателем (Electronic Control Module), меняющийся по напряжению сигнал, который снимается со скользящего контакта потенциометра. При открывании заслонки величина напряжения должна плавно нарастать, а при закрывании – уменьшаться. Кстати, если напряжение возрастает или снижается рывками (скачками), то это верный признак неисправности переменного резистора.

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Читать дальше»

Расположение датчика положения дроссельной заслонки на 1zz Потенциометр TPS обычно расположен противоположно рычагу управления дроссельной заслонки. Его предназначение – отслеживать положение дроссельного клапана: закрыт он или открыт и, если открыт, то каков этот угол.

ECM, сравнивая полученные от TPS данные, и имеющиеся, то есть «зашитые» в его памяти еще на заводе, управляет работой инжекторов (форсунок) и другого электронного оборудования, установленного на автомобиле. Если машина с АКПП, то она укомплектована своим электронным блоком управления, к которому так же поступает выходное напряжение TPS для управления коробкой-автоматом.

Проявление ошибки и «поведение» двигателя

Если что-то не в порядке с датчиком TPS, то в ECM будут поступать неверные данные о положении дроссельной заслонки или их вообще не будет. Электронный блок управления этим будет «введен в заблуждение» и в лучшем случае начнет управлять работой двигателя, «ориентируясь» на неправильные показания TPS, а в худшем – исключит показания TPS и зажжет лампочку «CHEK», т. е. код ошибки 41. Оба этих варианта работы неблагоприятно скажутся на динамике автомашины, что не может быть не замечено водителем.

Неисправности автомобиля из-за неверной регулировки или поломки TPS проявятся в «вялом» и ненадежном запуске двигателя, повышенном расходе горючего, увеличении оборотов холостого хода, «провалах» при наборе скорости. А на автомашине с АКПП начнутся «дергания» при переключении «скоростей», не будут включаться или будут затруднено включение повышенной передачи.

Поскольку на Тойотах в основном «стоят» АКПП, то при неисправности или нарушении регулировки TPS возникнет самый массовый и неприятный дефект. Он будет проявляться в отсутствии или задержке переключения передач, что станет особенно заметным при движении с места и наборе скорости: тахометр «зашкаливает» за три тысячи оборотов, а машина все еще двигается на первой передаче.

К неисправностям, связанным с TPS (ошибка 41 Тойота), можно отнести:

  • заметный рост оборотов холостого хода;
  • ухудшение топливной экономичности;
  • замедленное переключение передач АКПП;
  • включение передач АКПП со стуками и дерганьями
  • неадекватный ответ на резкое нажатие на педаль газа и т. д.

Регулировка, ремонт или замена датчика

При ремонте или установке нового TPS необходимо его настроить, чтобы ECM правильно распознавал признаки холостого хода, то есть когда педаль газа полностью отпущена, а положение дроссельной заслонки полностью закрыто.

При отсутствии признаков холостого хода не будет адекватного регулирования и режима принудительного холостого хода при торможении двигателем, что приведет к перерасходу топлива.

Главным здесь является правильная регулировка начального положения контакта IDL (контакт холостого хода). На большинстве моделей Toyota регулировку этого положения контакта IDL производят выставлением зазора «дроссельная заслонка – упорный винт». На двигателях 3S-FE Toyota он равен, например, 0,51 миллиметра.

Так же надо убедиться, осуществляется ли разрыв контакта холостого хода. Тем самым, мы узнаем, что на «дорожке» датчика отсутствуют обрывы, потертости и т. д.

Датчик положения дроссельной заслонки может не работать из-за отсутствия на нем «минуса». Если это обнаружилось, то он должен быть восстановлен. Также необходимо проверить поступление к датчику питания («плюса»), которое в зависимости от типа двигателя может быть равно 5 или 12 вольт.

Каталожные номера датчика дроссельной заслонки TPS Toyota

Датчик положения дроссельной заслонки Каталожные номера датчиков, следящих за положением дроссельных заслонок двигателей Тойота, начинаются с комбинации 89452 и далее через тире еще пять цифр: 12060, 20130, 21020, 22080, 22090, 22100, 30140, 30150, 33030, 35020, 36010, 52011. Вес датчика около 50 грамм, а цены колеблются от 1400 до 4300 рублей.

Читайте также  Часто выходит из строя датчик холостого хода

В качестве заменителей можно использовать подобные изделия других изготовителей, подходящие по величине напряжения питания (5 или 12 вольт) и другим параметрам.

Заказать контрактный двигатель Устал платить за штрафы? Выход есть! Забудьте о штрафах с камер! Абсолютно легальная новинка — Глушилка камер ГИБДД, скрывает ваши номера от камер, которые стоят по всем городам. Подробнее по ссылке.

  • Абсолютно легально (статья 12.2);
  • Скрывает от фото-видеофиксации;
  • Подходит для всех автомобилей;
  • Работает через разъем прикуривателя;
  • Не вызывает помех в радиоприемнике и сотовых телефонах.

Источник: https://motorist.expert/errors/31-oshibka-41.html

Датчик позиции дроссельной заслонки

Датчик TPS что это?

Датчик позиции дроссельной заслонки (TPS — Throttle Position Sensor) – прибор, контролирующий положение дросселя системы подачи топлива. Обычно применяется на автомобильных двигателях внутреннего сгорания. Датчик, как правило, располагается на шпинделе устройства. Такое расположение позволяет непосредственно контролировать положение штока. Датчик TPS, по сути, является потенциометром – переменным сопротивлением, меняющимся в зависимости от позиции штока (заслонки).

Подробнее о структуре TPS 

Сигнал датчика необходим модулю управления двигателя (ECU — Engine Control Unit) — подаётся на вход системы управления. Время зажигания и время впрыска топлива (а также другие параметры) меняются пропорционально позиции заслонки и скорости изменения этого положения.

Некоторые модификации модуля управления дросселем дополнены встроенными концевыми выключателями. Такие конструкции позволяют подключать датчик закрытого дросселя (CTPS — Closed Throttle Position Sensor) и датчик широко открытого дросселя (WOT — Wide Open Throttle). Датчик WOT нередко монтируется на педали акселератора.

TPS ДАТЧИК

Штепсельный разъём датчика на шесть контактов, когда дополнительно к стандартному разъёму имеется разъём CTPS и WOT. На схеме, соответственно: 1 – датчик положения; 2 – контакт WOT; 3 – контакт CTPS; 4 – контактная группа TPS 

В целом, существуют три типа датчиков позиции:

  1. С концевыми выключателями (TS).
  2. По типу потенциометра (TPS).
  3. Комбинированный вариант (TS + TPS).

Сигнал позиции формируется стандартным контактом (TS) или потенциометром (TPS). Есть также схемы на основе комбинированного датчика (TS + TPS). Некоторые автомобильные системы используют оба типа в качестве отдельных элементов.

ДПДЗ SUZUKI

Вариант датчика на четыре контакта: 1 – проводник заземления; 2 – сигнал холостого хода; 3 – сигнал TPS; 4 – напряжение питания 5 вольт

Принцип действия датчика дроссельной заслонки (TPS)

Датчик TPS передаёт бортовому контроллеру рабочие сигналы:

  • холостого хода,
  • замедления,
  • ускорения,
  • датчика широко открытого дросселя (WOT).

Датчик TPS фактически является трёхпроводным потенциометром. Первым проводом напряжение + 5В подаётся на резистивный слой датчика.

Второй провод замыкает цепь датчика на землю. Третий провод подключается на скользящий контакт потенциометра датчика.

JEEP GRAND

Вариант датчика позиции дросселя на три контакта: 1 – напряжение питания 5 вольт; 2 – сигнал скользящего контакта потенциометра датчика; 3 – контакт заземления

На основании полученного напряжения от скользящего контакта, бортовым компьютером вычисляется:

  • холостой ход (ниже 0,7 В),
  • полная нагрузка (около 4,5 В),
  • скорость хода дроссельной заслонки.

При полной нагрузке бортовой компьютер обеспечивает дальнейшее обогащение топливной смеси. В режиме замедления (закрытый дроссельный клапан + частота вращения вала мотора выше определенного параметра) бортовой компьютер отключает впрыск топлива.

Подача топлива возобновляется после того, как число оборотов двигателя автомобиля достигнет значения холостого хода или когда открыт дроссельный клапан. Некоторые автомобили позволяют регулировать эти значения.

Датчик на концевых выключателях (TS)

Датчик вида TS информирует бортовой компьютер о состоянии холостого хода. Обычно датчик TS имеет второй контакт для контроля состояния широко открытого дросселя (WOT).

В большинстве случаев бортовой компьютер обеспечивает дополнительное обогащение топливной смеси в холостом состоянии и при полностью открытой дроссельной заслонке. Каждый контакт датчика TS приобретает одно из двух состояний:

На основании состояний контактов датчика позиции, бортовой компьютер обнаруживает три разных режима работы двигателя автомобиля:

  • заслонка закрыта (контакт холостого хода закрыт),
  • заслонка в начальной стадии открывания (контакт холостого хода и датчика WOT открыты),
  • заслонка полностью открыта (контакт холостого хода открыт, контакт датчика WOT закрыт).

Некоторые модели автомобилей поддерживают возможность регулировки TS.

Процедура проверки функциональности TPS

Следующие (описанные ниже) операции применяются при условиях использования типичного трехпозиционного датчика дроссельной заслонки.

В некоторых случаях переключатель холостого хода и переключатель полной нагрузки допускают раздельное подключение.

FIAT PUNTO

Тестирование датчика на возможные неисправности выполняется посредством прибора, измеряющего сопротивление и напряжение: 1 — разъём датчика; 2 — тестер; 1, 2, 3, 4 — контакты для тестирования

Дроссельный датчик (TS)

Существуют раздельные переключатели холостого хода и полной нагрузки. В конструкциях некоторых моделей машин переключатель положения заслонки находится на педали акселератора.

Независимо от местоположения коммутатора, процедура проверки выполняется аналогично для всех типов датчиков.

Как проверить напряжение TS?

Три провода, входящие в штепсельный соединитель датчика позиции, это соответственно:

  • заземление,
  • сигнал режима холостого хода,
  • сигнал полной нагрузки.
Читайте также  Как проверить исправность датчика АБС?

Необходимо подключить отрицательную клемму вольтметра на контакт заземления двигателя. Предварительно следует точно определить клеммы заземления, холостого хода и полной нагрузки датчика. Затем включить зажигание, но двигатель автомобиля не запускать.

Подключить положительный вывод вольтметра на контакт датчика холостого хода. Вольтметр должен показать напряжение 0В.

Если показано напряжение 5В, следует ослабить винты и отрегулировать переключатель таким образом, чтобы вольтметр считывал нулевое напряжение.

Не все модели автомобилей поддерживают возможность регулировки переключателя дроссельной заслонки.

Как проверить сопротивление TS?

Нужно подключить омметр между клеммами заземления и холостого хода. Когда переключатель дроссельной заслонки замкнут, омметр должен показывать сопротивление около 0 Ом (практически короткое замыкание).

Далее неспешно открыть дроссельный клапан до момента размыкания переключателя. Сопротивление должно измениться на бесконечную величину (практически полное размыкание).

Подключить омметр между заземлением и терминалами режима полной нагрузки. Когда переключатель заслонки замкнут, омметр должен показывать прерывание цепи (бесконечное сопротивление).

Медленно открыть дроссель. В момент размыкания переключателя слышен характерный щелчок, сопротивление при этом должно оставаться бесконечным.

Когда угол открытия заслонки достигнет значения больше 72 градусов, сопротивление изменится на значение 0 Ом.

BMW E 46

Рабочие углы датчика, на которые обращается внимание в процессе настройки или тестирования прибора

Если переключатель не работает согласно представленному описанию, включение и выключение не регулируется путём изгиба рычагов привода, скорее всего, переключатель дроссельной заслонки неисправен.

Теоретические (и практические) повреждения датчика

1) Невозможно получить напряжение 0В (закрытый дроссельный клапан).

В этом случае проверяется состояние дроссельной заслонки. Выполняется проверка соединения переключателя с землей. Измеряется сопротивление на контактах переключателя.

Если напряжение нормальное при условии закрытого дроссельного клапана, можно попытаться резким движением открыть дроссельный клапан. Как правило, механизм издаёт характерный щелчок, и напряжение поднимается до уровня 5В.

2) Напряжение низкое или отсутствует (клапан дроссельной заслонки открыт)

Здесь проверяется состояние подключения переключателя режима холостого хода на предмет возможного подключения к земляной шине.

Нужно отсоединить разъём и проверить наличие напряжения 5В в режиме холостого хода. Если напряжение отсутствует, рекомендуется выполнить следующие тесты:

  • проверить целостность провода сигнала режима ожидания между коммутатором и бортовым контроллером;
  • проверить наличие питания и заземления бортового контроллера. Если потенциалы присутствуют, возможно, неисправность на встроенном контроллере.

3) Напряжение нормальное (клапан дроссельной заслонки открыт)

Подключить положительный вывод вольтметра к проводу контакта переключателя режима полной нагрузки. Когда дроссельный клапан находится в режиме ожидания или чуть приоткрыт, вольтметр должен считывать напряжение 5В.

4) Напряжение низкое или отсутствует (клапан дроссельной заслонки закрыт или чуть приоткрыт)

Проверить подключение заземления. Выполнить проверку связи контакта полной нагрузки с переключателем дроссельной заслонки на возможный контакт с потенциалом земли.

Отсоединить разъем переключателя. Проверить наличие напряжения 5В на контакте полной нагрузки. Если указанное напряжение отсутствует, выполнить следующие тесты:

  • проверить целостность провода сигнала режима ожидания между коммутатором и бортовым контроллером;
  • проверить подключения питания и заземления бортового контроллера. Если потенциалы присутствуют, неисправность, возможно, на встроенном контроллере.

5) Напряжение нормальное (клапан дроссельной заслонки закрыт или чуть приоткрыт)

Полностью открыть дроссельный клапан. При достижении угла открытия более 72º, напряжение, как правило, снижается до нуля. Если напряжение не спало, есть вероятность неисправности дроссельного переключателя.

Тестирование датчика позиции дроссельной заслонки (TPS)

Большинство потенциометров дроссельной заслонки имеют три контактных клеммы. Однако встречаются конструкции, где имеются дополнительные контакты, функционирующие как дроссельные переключатели. Если такие контакты существуют, система тестируется подобно тому, как описано выше.

Проверка напряжений на TPS

Подключить отрицательную клемму вольтметра на клемму заземления двигателя. Предварительно определить клеммы заземления, холостого хода и полной нагрузки.

ДПРВ GM

Тестирование датчика позиции дросселя по рабочим напряжениям с помощью стандартного тестера, включенного в режиме измерений постоянных напряжений

Соединить положительный вывод вольтметра с проводом, подключенным на контакт сигнала от потенциометра дроссельной заслонки. Включить зажигание, но двигатель не запускать.

Для большей части автомобилей показания напряжения здесь должны соответствовать значению менее 0,7 В.

Периодически несколько раз открыть и закрыть дроссельный клапан, контролируя плавность нарастания напряжения. Скачки исключаются.

Проверка сопротивления TPS

Подключить омметр между клеммой скользящего контакта потенциометра и клеммой опорного напряжения или между токопроводящей шиной скользящего контакта и землёй.

Несколько раз открыть/закрыть дроссельный клапан, контролируя плавный ход изменения сопротивления. Если значение сопротивления потенциометра бесконечно или равно нулю, это указывает на неисправность.

Точные значения сопротивления потенциометра дроссельной заслонки не указаны. Одна из причин заключается в том, что многие производители автомобилей не публикуют контрольные данные.

Тот факт, что сопротивление потенциометра поддерживается в пределах нормы, менее важен, чем правильная работа потенциометра, то есть — плавное изменение сопротивления при перемещении дроссельной заслонки.

Подключить омметр между клеммами земли и питания. Полученное на шкале прибора значение сопротивления должно оставаться постоянным (стабильным). Если сопротивление хаотично изменяется от бесконечного значения к низкому значению, необходимо заменить потенциометр.

Возможные повреждения конструкции TPS

Хаотический выходной сигнал — наблюдается, когда потенциал 5В быстро нарастает, падает до нуля и полностью исчезает. Хаотичность выходного сигнала потенциометра дроссельной заслонки обычно указывает на дефектный потенциометр. В этом случае этот элемент рекомендуется заменить.

Читайте также  Датчик отключения компрессора по давлению

Отсутствует сигнал напряжения – нет питания 5В на контакте датчика позиции дроссельной заслонки. Проверить состояние контакта заземления потенциометра. Проверить сигнальный провод, соединяющий потенциометр дроссельной заслонки с бортовым контроллером.

Если источник питания и земля показывают слабый потенциал, проверить целостность проводов между потенциометром и бортовым контроллером.

В случае исправности проводников потенциометра, проверить качество всех подключений питания и заземления бортового контроллера. Если «ОК», наиболее вероятной причиной неисправности является контроллер.

Выходной сигнал (питание) равны напряжению АКБ

Проверить наличие короткого замыкания в проводах, подключенных к положительной клемме аккумуляторной батареи автомобиля или к шине питания. Проверить потенциометр дроссельной заслонки с помощью осциллографа.

При помощи информации: Autoditex

Источник: https://zetsila.ru/%D0%B4%D0%B0%D1%82%D1%87%D0%B8%D0%BA-%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D0%B8-%D0%B4%D1%80%D0%BE%D1%81%D1%81%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9-%D0%B7%D0%B0%D1%81%D0%BB%D0%BE%D0%BD%D0%BA%D0%B8/

Почему некоторые двигатели используют датчики TPS и MAP? — СпросиСеть

Датчик TPS что это?

Хотя эти два датчика связаны с тем, как работает двигатель, их функции и функции управления двигателем совершенно разные.

MAP (или датчик абсолютного давления в коллекторе)

MAP предоставляет компьютеру информацию о плотности воздуха. Это говорит двигателю, сколько воздуха фактически попадает в двигатель . Это, наряду с датчиком массового расхода воздуха (MAF) (если таковой имеется) и датчиками O2, сообщает руководству двигателя, сколько топлива нужно рассеять в каждом цилиндре, чтобы поддерживать соотношение воздух / топливо где-то около стоика, так что двигатель будет работать в лучшем виде с меньше выбросов.

TPS (или датчик положения дроссельной заслонки)

TPS в основном там, чтобы предоставить компьютеру вход для водителя . Что хочет сделать водитель? Увеличенное значение TPS обеспечивает большую нагрузку на двигатель и ускоряет движение автомобиля.

Он также может указывать системе управления, нужна ли передача с понижением передачи для обеспечения реакции транспортного средства, которую хочет водитель.

Следует отметить, что, поскольку большинство производителей транспортных средств движутся в направлении «езды по проводам» (нет прямой связи между педалью дроссельной заслонки и корпусом дроссельной заслонки), в TPS нет необходимости. Так как компьютер управляет дросселем, он уже знает, где находится положение дросселя, потому что он направляет шоу.

Имейте в виду, это основные причины наличия каждого из этих датчиков. В то время как вы могли бы определить положение дроссельной заслонки из-за давления в коллекторе, наличие обоих датчиков позволяет двигателю быть более отзывчивым.

Если запускать датчик MAP, чтобы определить эти вещи, компьютер всегда будет реагировать и пытаться идти в ногу со спросом. В программировании должны быть заложены большие допущения, и я бы предположил, что для компенсации потребуется более мощная система управления двигателем.

Наличие обоих датчиков дает компьютеру точную потребность водителя, а также количество воздушного потока, поступающего в двигатель, чтобы обеспечить водителю гораздо лучший опыт вождения.

Следует отметить, что в отношении автомобиля на автомобиле установлены как MAF, так и датчик MAP. Эти двое делят много обязанностей, чтобы помочь с управлением двигателем. Многие автомобили GM выпускались с обоими датчиками (и до сих пор есть).

Без MAF управление двигателем может работать в так называемом режиме плотности скорости . Хотя этот режим работает, наличие MAF обеспечивает более точное измерение поступающего воздуха для компьютера и, таким образом, улучшает управление топливом, экономию и меньшие выбросы.

Это обеспечивает ограничение во впускном тракте, но это компромисс.

Зайд

Я намеренно не хотел поднимать датчик MAF в этом вопросе, но, поскольку вы упомянули его, я воспользуюсь им, чтобы объяснить, почему я чувствую, что наличие TPS и MAP добавляет мало пользы. Если MAF может сообщить компьютеру, какой объем потока присутствует, а TPS может предоставить сигнал положения дроссельной заслонки, компьютер может определить, где работает двигатель. С помощью датчика MAP положение дроссельной заслонки теоретически может быть предсказано на основе сигнала давления, а это значит, что вы можете полностью отказаться от TPS, нет?

Pᴀᴜʟsᴛᴇʀ2 ♦

Я полагаю, что теоретически вы могли бы покончить с этим, но наличие TPS обеспечивает гораздо лучший отклик на газ, не создавая угрозы наклона, пока компьютер не догонит поток воздуха. Я не знаю, как GM на самом деле программирует вещи, хотя.

Зайд

Я думаю, что вы на что-то. Вполне вероятно, что TPS обеспечивает гораздо более быстрый отклик на изменение дроссельной заслонки по сравнению с сигналом MAP. Вы должны поместить это в ответ. Тогда я бы спросил, почему мы не покончили с датчиком MAP, но, думаю, Бен рассказал об этом в своем комментарии к EGR.

HandyHowie

Наличие нескольких датчиков позволит PCM проверить, все ли датчики дают достоверные показания относительно друг друга. Если один из них не согласен с другими, PCM сможет пометить этот датчик как неисправный и продолжать работу двигателя. Если есть только MAP, PCM должен будет предположить, что показания правильны, что может вызвать серьезные проблемы, если оно неисправно.

Зайд

@HandyHowie, хотя это правда, я бы ожидал, что избыточность датчиков будет дополнительным бонусом, а не основной причиной для обслуживания двух разных типов датчиков.

Источник: https://askentire.net/q/pochemu-nekotorye-dvigateli-ispolzuyut-datchiki-tps-i-map-25016274981